

UNIT –I INTRODUCTION& DIVIDE AND CONQUER

1	a) Explain the properties of an algorithm with an example.b) Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step count method.	[L2,L3][CO1]	[12M]
2	Write Divide – And – Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm.	[L1,L4][CO2]	[12M]
3	a. Differentiate between Bigoh and omega notation with example.b. Distinguish between Algorithm and Psuedocode	[L1,L3][CO3]	[12M]
4	Define time complexity and space complexity. Write an algorithm for adding n natural numbers and find the space required by that algorithm.	[L2,L5][CO2]	[12M]
5	List out the steps that need to design an algorithm.	[L1,L4][CO3]	[12M]
6	Explain Strassen's algorithm for matrix multiplication with the help of an example	[L2,L5][CO4]	[12M]
7	Discuss the concepts of asymptotic notations and its properties	[L2,L3][CO4]	[12M]
8	What do you mean by randomization? Describe asymptotic notation	[L2,L4][CO3]	[12M]
9	Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms Understand and Selection Sort with example?	[L1,L5][CO5]	[12M]
10	Define Merge Sort with example and importance of Merge Sort	[L1,L3][CO3]	[12M]

UNIT –II

Greedy Method and Dynamic Programming

1	What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example.	[L2,L3][CO1]	[12M]
2	Explain the general principle of Greedy method and also list the applications of Greedy method	[L1,L4][CO1]	[12M]
3	What is the time complexity of the Job sequencing with deadlines using greedy algorithm?	[L1,L3][CO2]	[12M]
4	What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost spanning tree and list some applications of it.	[L2,L5][CO2]	[12M]
5	Explain the Single source shortest path problem with an example.	[L1,L3][CO3]	[12M]
6	Write the algorithm to compute 0/1 Knapsack problem using dynamic programming and explain it.	[L1,L4][CO2]	[12M]
7	Briefly explain Multistage graphs with suitable examples?	[L2,L3][CO4]	[12M]
8	Explain the applications of depth first search algorithm	[L1,L3][CO4]	[12M]
9	Describe Traveling sales person problem with suitable example.	[L1,L2][CO3]	[12M]
10	Illustrate optimal binary search trees.	[L1,L5][CO5]	[12M]

UNIT –III Basic Traversal and Search Techniques , Back Tracking

1	Explain any one application back tracking with example?	[L1,L2][CO1]	[12M]
2	Describe in detail 8-queens problem using back tracking?	[L2,L5][CO2]	[12M]
3	Explain 0/1 knapsack problem by using backtracking with an examples?	[L1,L3][CO2]	[12M]
4	Describe in detail graph coloring using back tracking?	[L1,L4][CO3]	[12M]
5	What is DFS? Explain DFS with suitable example	[L1,L3][CO2]	[12M]
6	What is a Spanning tree explain with suitable examples and also explain the importance of Spanning trees.	[L1,L4][CO3]	[12M]
7	What are the Techniques about Graphs explain it ?Describe Bi-connected components	[L1,L3][CO4]	[12M]
8	Determine Sum of subsets problem.	[L2,L4][CO5]	[12M]
9	Define binary trees and Explain techniques for binary trees	[L1,L3][CO4]	[12M]
10	Illustrate Hamiltonian Cycle. Explain Hamiltonian cycles with examples	[L2,L4][CO3]	[12M]

UNIT –IV Branch and Bound, Lower Bound Theory

1	Explain the general method of branch and bound	[L1,L2][CO1]	[12M]
2	Apply branch and bound to 0/1 knapsack problem and elaborate it?	[L2,L3][CO2]	[12M]
3	Explain the method of reduction to solve TSP problem using branch and bound?	[L3,L4][CO3]	[12M]
4	Explain the principles of FIFO branch and bound.	[L1,L3][CO1]	[12M]
5	a) Explain the properties of LC-searchb) Explain control abstraction of LC-branch and bound	[L2,L4][CO2]	[12M]
6	Briefly explain the FIFO brach and bound solution with example	[L1,L3][CO2]	[12M]
7	Briefly explain the LC brach and bound solution with example?	[L1,L4][CO1]	[12M]
8	State 0/1 knapsack problem and design an algorithm of LC Branch and Bound and find the solution for the knapsack instance with any example	[L1],L5[CO3]	[12M]
9	a) Explain Multiplying triangular matricesb) Describe inverting a lower triangular matrices	[L1,L4][CO2]	[12M]
10	Define efficiency considerations of Branch and bound	[L1,L5][CO5]	[12M]

$\label{eq:UNIT-V} UNIT-V$ NP – Hard and NP – Complete Problems, Reductions

1	a) How are P and NP problems related?b) Differentiate Time Efficiency and Space Efficiency	[L1,L2][CO1]	[12M]
2	Compare NP-hard and NP-completeness with examples.	[L2,L3][CO2]	[12M]
3	Write the non-deterministic sorting algorithm and also analyze its complexity?	[L2,L4][CO3]	[12M]
4	Explain the class of P and NP with example?	[L1,L3][CO2]	[12M]
5	Differentiate between NP- complete and NP-hard problems?	[L1,L2][CO3]	[12M]
6	State and explain cook's theorem.	[L1,L3][CO4]	[12M]
7	Explain the strategy to prove that a problem is NP-hard.	[L2,L4][CO2]	[12M]
8	Explain the satisifiability problem and write the algorithm	[L1,L4][CO1]	[12M]
9	What is halting problem explain with an example?	[L1,L5][CO5]	[12M]
10	a) Discuss the general plan for analyzing Time efficiency of recursive algorithm.b) Explain Reduction Source Problems.	[L1,L5][CO1]	[12M]

Prepared by:

Dr. A. Swarupa Rani Associate Professor/MCA